

Crescent Newcastle Pty Ltd Proposed Multi - Building Residential Development 11-17 Mosbri Crescent, Cooks Hill NSW 2300

Preliminary Geotechnical Report 754-NTLGE220504-AG.Rev3

Trust is the cornerstone of all our projects

This page has been left intentionally blank

Preliminary Geotechnical Report - Proposed Multi - Building Residential Development 11-17 Mosbri Crescent, Cooks Hill NSW 2300

Prepared for Crescent Newcastle Pty Ltd

Prepared by Coffey Services Australia Pty Ltd 19 Warabrook Boulevard Warabrook NSW 2304 Australia t: +61 2 4016 2300 ABN 55 139 460 521

14 January 2019

754-NTLGE220504-AG. Rev3

Quality information

Revision history

Revision	Description	Date	Originator	Reviewer	Approver
Version 0	Geotechnical Report	31.10.2018	Rehan Bukhari	Jules Darras	Simon Baker
Revision 1	Geotechnical Report	14.12.2018	Rehan Bukhari	Jules Darras	Simon Baker
Revision 2	Geotechnical Report	17.12.2018	Rehan Bukhari	Jules Darras	Simon Baker
Revision 3	Geotechnical Report	14.01.2019	Rehan Bukhari	Jules Darras	Simon Baker

Distribution

Report Status	No. of copies	Format	Distributed to	Date
Report	1	PDF	Richard Anderson	31.10.2018
Revision 1	1	PDF	Mark Purdy	14.12.2018
Revision 2	1	PDF	Mark Purdy	17.12.2018
Revision 3	1	PDF	Mark Purdy	14.01.2019

Table of contents

1.	Introd	uction		1
2.	Fieldv	vork		2
3.	Site C	conditior	s	3
	3.1.	Surface	Conditions	3
	3.2.	Ground	model	3
	3.3.	Ground	water	6
4.	Labor	atory te	sting	6
5.	Discu	ssion		7
	5.1.	Genera	Ι	7
	5.2.	Earthw	orks	7
		5.2.1.	Site preparation	7
		5.2.2.	Fill placement	7
		5.2.3.	Groundwater	8
		5.2.4.	Excavation stability	8
		5.2.5.	Dilapidation survey	8
		5.2.6.	Excavatability	8
		5.2.7.	Reuse of material	9
	5.3.	Founda	tion	9
		5.3.1.	High level footings	9
		5.3.2.	Deep footings	0
		5.3.3.	Earthquake design	0
	5.4.	Retaini	ng wall design1	1
	5.5.	Pavem	ent design parameters1	1
6.	Limita	tions	1	1

Tables

- Table 1: Summary of generalised ground model
- Table 2: Distribution of geological units
- Table 3: Shrink swell test results
- Table 4: CBR and standard maximum dry density test results
- Table 5: Atterberg limits test results
- Table 6: Preliminary ultimate deep foundation design parameters
- Table 7: Retaining wall parameters

Appendices

Drawings Appendix A – Borehole Logs Appendix B – Laboratory Test Results

1. Introduction

Coffey Services Australia Pty Ltd (Coffey) was commissioned by Crescent Newcastle Pty Ltd (Crescent) to carry out a geotechnical investigation for the proposed multi building residential development located at 11-17 Mosbri Crescent, The Hill, NSW.

This report addresses the geotechnical scope of work outlined in our proposal referenced as 754-NTLGE220504.P01.Rev02, Section 2.3 Geotechnical, dated 27 August 2018. Preliminary contamination assessment and mine subsidence investigations will be reported separately.

The currently proposed development will include:

- Construction of residential accommodation comprising 172 dwellings, being:
 - Eleven (11) two storey townhouse style dwellings fronting Mosbri Crescent, located above a basement car park containing 34 visitor spaces and 11 resident spaces;
 - Three (3) residential flat buildings (Building A, B, and C) containing 161 dwellings, ranging from one to three bedrooms; being
 - Building A including a nine (9) storey east wing and six (6) storey west wing;
 - Building B comprising seven (7) storeys and a roof top communal open space, with (9) town house style dwellings facing the internal courtyard;
 - Building C comprising five (5) levels;
- Interconnected car parking for Building A, B & C located on the ground floor and first level, contains 1 visitor spaces and 196 resident spaces;
- Pedestrian path, providing connection from Mosbri Crescent to Kitchener Parade; and
- Associated landscaping, communal open space, services and site infrastructure.

Site is sloping south westerly towards Mosbri Crescent Reserve and existing ground RLs within the footprint of the Building A, B and C varies between RL 26m AHD and RL 38.00m AHD. The combined basement levels will require excavation of up to approximately 8.5m to 9.5m below existing ground level (RL 28.10m AHD and RL 29.60m AHD) at the rear (eastern) side of the property although the proposed excavation is generally less that 4m (from less than RL 32m AHD current levels down to the RL 28.1m AHD proposed).

Two storey townhouses are proposed along Mosbri Crescent with single basement level. Maximum excavation required for the proposed townhouses will be approximately 4.5m below ground level (proposed basement RL 25.40m AHD to RL 28.20m AHD from current surface levels of RL 27.2m AHD to RL 32m AHD).

Vehicular access to the proposed development is via ramp from Mosbri Crescent connecting with proposed basements driveways, located next to apartment building located at 9 Mosbri Crescent, north western side of site.

Prior to this report Coffey was given following documents:

- Site Survey Plan prepared by Monteath & Powys Pty Ltd, titled as "Detail Survey Over Lot 1 DP204077, NBN Studios, Mosbri Crescent, The Hill", referenced as 15/047 and dated 10/4/15, inclusive;
- Preliminary Architectural Drawings prepared by Marchese Partners International Pty Ltd, titled as "11-17 Mosbri Crescent, The Hill NSW 2300", referenced as job 171114 and comprises of drawing from DA2.01 to DA2.11, revision P1 dated as 29/11/2018, water marked as work in progress.

This report presents the results of the preliminary site geotechnical investigation carried out to assess the geotechnical conditions of the subsurface materials at the proposed development site. This will be used to provide preliminary geotechnical design parameters and recommendations on the foundation type and other geotechnical advice relevant to construction of the proposed apartment buildings. This report addresses to the following objectives outlined in our proposal:

- General description of site geology.
- Review of previous reports in the area.
- A description of soil conditions encountered including any fill.
- Identification of water table level where observed.
- Identification of suitable footing types & founding levels including:
 - Recommendations on bearing pressures for foundations, expected to be high level pad footings at the northern end and bored piers founded in rock at the southern end.
 - Advice on Pile design (including tension piles) and recommended geotechnical parameters and testing requirements in accordance with AS2159, including both allowable and ultimate shaft adhesion and end bearing.
- Parameters for retaining wall/shoring design (including both at rest and active parameters, cohesion values for clays and lateral bearing capacities).
- Advice on the construction of temporary and permanent batters.
- Reporting on site conditions, constraints to development and excavation conditions including the existence of any wet or poor subgrade conditions.
- Advice on techniques for establishing building platforms including treatment of wet and unsuitable areas.
- Advice on the ability to excavate subsoil materials (particularly rock) likely to be encountered during construction.
- Identification of "site sub-soil classification" for earthquake design as per AS1170.4-2007.
- Pavement design parameters.

To address the objectives above, our scope of work has included an investigation programme including boreholes, laboratory testing and analysis as described below.

2. Fieldwork

Coffey undertook a combined fieldwork set out for mine subsidence investigation, geotechnical investigation and environmental sampling. Fieldwork was carried out from 3 to 21 September 2018. For geotechnical parameters Coffey completed the following:

- · Setting out borehole location based on dial before you dig plans and site access
- Drilling of five boreholes BH01, BH02, BH02a, BH03 and BH04, using a tracked Comacchio 450P drill rig. Note that BH02 was terminated due to service strike and re-located to BH02a location, as shown in the borehole location Drawing 1.
- BH01, BH02, BH02a, BH03 and BH04 were augured down to 4.5m, 4.0m, 0.25m, 3.4m and 4.7m below ground level, respectively with SPT's completed at 1.5m intervals. Drilling continued as rotary core drilling for pile design and mine subsidence investigation in BH01 and BH03 to the base of the Borehole Seam Workings to 102.1m depth. BH02a and BH04 continued as PCD drilling (not cored) to the base of the Borehole Seam Workings to 102.0m and 101.6m depth, respectively.
- Laboratory testing was carried out on samples retrieved during drilling and following tests were done:
 - 2 nos. four-day soaked California Bearing Ratio (CBR).
 - 3 nos. shrink/swell.

- 2 nos. Atterberg Limit.
- Point Load index tests at 2m centres.

Field work was carried out in the full-time presence of Coffey geotechnical engineers who produced field logs and nominated sampling of the boreholes.

Site location and the locations of the boreholes are shown in Drawing 1. The engineering logs and core photos for the boreholes are presented in Appendix A, together with explanatory Sheets defining the terms and symbols used. Results from laboratory testing are included in Appendix B.

3. Site Conditions

3.1. Surface Conditions

The site is an irregular shaped land with an approximate area of 1.2ha and consists of properties 11-17 Mosbri Crescent, Cooks Hill.

At the time of the investigation, a two / three storey commercial building was present within the site (NBN building), covering one third of the site area with a single basement level carpark. A couple of sheds, cooling tower and satellite dish were present within the rear portion of the property. A two level carpark was present towards the north and few parking bays at the back of the exiting NBN building. The remaining site area being covered in associated pavements, grassed area and several mature trees scattered along the site boundary. Vehicular access to site was via driveways from Mosbri Crescent.

The site is located within the Newcastle City Council area, adjacent to Mosbri Crescent carriageway, which is a minor road reserve within the local area. The site shares eastern boundary with Arcadia Park reserve located uphill. The site is bounded by the following properties, public roads and infrastructure:

- Kitchener Parade carriageway and road reserve to the north of the site
- Arcadia Park to the east of the site
- Two and three storey residential buildings and Mosbri Crescent to the north west and west of site boundary; and
- Single and double storey residential buildings to south and south west of the site

The site topography during the investigation slopes was generally gently to moderately sloping and has an angle of approximately 10° towards the south west to west.

3.2. Ground model

Based on the 1:100,000 scale Newcastle Coalfield Geology map, the site is underlain by rocks and soils derived from the late Permian aged Lambton Subgroup of the Newcastle Coal Measures comprising sandstone, siltstone, claystone, coal and tuff. This corresponds to site observations with high plasticity clay soils underlain by sandstone.

At the locations of the ground investigation results, the site is overlayed by fill material to a depths of between 0.25m and 2.8m. This is underlain by residual soils grading into extremely weathered material comprising clay materials to a depth of 4.7m. It is noted the boreholes were carried out in accessible areas only which comprise the current carpark or paved areas. Further drilling will be required at later stage to confirm the preliminary ground model.

The borehole location plan is provided in Drawing 1. All borehole logs from the site investigation are provided in Appendix A. The interpreted geotechnical units encountered at the site are shown in Table 1 with the distribution of the above units shown in Table 2.

Table 1: Summary of generalised ground model

Unit	Material / Origin	Description
1a	Fill	WEARING COARSE: bitumen sprayseal/s, up to 20mm thick varying within the site
		Sandy CLAY: low to medium plasticity, grey, dark brown, fine grained sand, with fine angular to sub-angular gravel
16	F :11	Sandy GRAVEL: fine to coarse grained, sub-angular to angular, grey, with fine grained sand
D		Clayey SAND: fine to coarse grained, brown and red
		Sandy CLAY: low to medium plasticity, dark brown, dark grey, mottled orange, fine grained sand, with fine, sub-angular to sub-rounded gravel and glass pieces
		Sandy CLAY: low to medium plasticity, dark brown and dark grey, mottled red, fine to coarse grained sand
2a	Residual Soil	CLAY: low to medium plasticity, grey to pale grey, orange laminations, mottled orange, red and brown, with fine grained sand and gravel
		Gravelly CLAY: low to medium plasticity, pale grey and grey, fine grained, rounded to sub-rounded gravel, trace of fine to coarse grained sand
2b	Extremely weathered material to highly	Sandy CLAY: low plasticity, orange, mottled pale brown, fine grained sand
	weathered material	SANDSTONE: fine grained, pale grey and orange
3а	Moderately to slightly weathered rock	SANDSTONE: fine to medium grained, brown/orange and grey, with siltstone bands and black carbonaceous laminations, distinctly to slightly weathered, low to medium strength
3b	Coal Seam	COAL: black, crushed seams, extremely weathered to highly weathered, very low to low strength, cleated
3c	Slightly weathered to fresh rock	SANDSTONE: fine to medium grained, grey to brown, with black carbonaceous veneer, moderately to slightly weathered, low to medium strength
3d	Moderately to slightly weathered rock	SILTSTONE: grey to dark grey, with some sandstone bands, slightly weathered to fresh, low to medium strength
3e	Coal Seam	COAL: black, crushed seams, extremely weathered to highly weathered, very low to low strength, cleated
3f	Moderately to slightly weathered rock	SILTSTONE: grey to dark grey, with some sandstone bands, slightly weathered to fresh, low to medium strength
3g	Slightly weathered to fresh rock	SANDSTONE: fine to medium grained, greyto brown, with black carbonaceous veneer, moderately to slightly weathered, low to medium strength

Table 2: Distribution of geological units

	Depth to base of inferred geotechnical unit (m)										
Borehole ID	Unit 1a	Unit 1b	Unit 2a	Unit 2b	Unit 3a	Unit 3b	Unit 3c	Unit 3d	Unit 3e	Unit 3f	Unit 3g
BH01	0.05	0.40	4.20	4.50	13.65	NE	20.12	25.05	29.70	33.30	>40.00
BH02	0.03	1.7	3.6	4.04	NE						
BH02A	0.05	0.25	NE	NE				NC			
BH03	0.03	0.40	1.80	3.40	17.20	18.46	25.95	27.35	29.20	31.70	>40.00
BH04	0.02	2.80	4.60	4.70	NC						
Notes NE - Not encountered NC – Not cored											

3.3. Groundwater

Groundwater inflows were not encountered within soil profile during the site investigation. The stationary water levels after encountering the mine workings was approximately 3m AHD. Following drilling and as a part of the mine subsidence investigation, on 4 September 2018, a CCTV camera was used to observe conditions in the borehole BH01. Some water was observed flowing into the boreholes from 12m BGL (approximately 19m AHD) although the source could not be positively identified. Similar water was observed in BH03 on the 13 September 2018 from approximately 20m BGL 13m AHD. No such water was observed in BH04 on the 14 September 2018.

4. Laboratory testing

Samples obtained during the investigation were returned to Coffey's Newcastle laboratory for temporary storage and NATA accredited testing. Laboratory testing carried out is outlined in Section 2 Fieldwork.

The test results are presented in Appendix B and summarised in the following tables..

Table 3: Shrink swell test results

Hole ID	Depth (m)	Field Moisture Content (%)	Swell (%)	Saturated Moisture Content (%)	Shrinkage (%)	lss (%)
BH02	0.5 – 0.8	19.8	-0.7	23.4	4.6	2.5
BH02	1.5 – 1.7	12.0	-0.7	15.3	0.9	0.5
BH04	2.0 – 2.3	20.2	-0.9	24.5	4.9	2.7

Table 4: CBR and standard maximum drydensity test results

Borehole	Depth (m)	Field Moisture Content (%)	Optimum Moisture Content (%)	SMDD (t/m3)	CBR (1)	
BH02	0.5 – 1.0	27.0	18.7	1.69	3.5	
BH03 0.5-1.0 23.2 19.1 1.67 1.0						
Notes (1): 4-day soak and 4.5kg surcharge						

Table 5: Atterberg limits test results

Borehole	Depth (m)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)
BH02	1.4 – 1.5	38	14	24
BH04	1.5 – 2.0	19	14	5

5. Discussion

5.1. General

The proposed multi-building development will cover majority of the site area. Significant excavations will be required for basement levels construction. Drilling data indicate deep uncontrolled fill (refer to Section 3.2) is present at the south eastern corner of the NBN building (rear). Boreholes were drilled only within the footprint of proposed Building A and C due to access limitations and the primary focus of the investigation being for the mines. Additional deposits of uncontrolled fill are likely, and consideration should be given to further site investigation following the demolition works of the exiting building and associated structures for complete understanding of the geotechnical ground model. In the absence of an engineer's certification, all fill on the site is considered to be 'uncontrolled' and not suitable for support of structures or pavement.

5.2. Earthworks

5.2.1. Site preparation

General site preparation for the proposed development will require removal or relocation of services etc., and removal of vegetation across the footprint of the development. Following this all fill/topsoil, root affected materials and any obvious deleterious material should be removed and suitably disposed of or used for landscaping purposes only.

Given the cohesive nature of the subgrade materials, the site may become un-trafficable when subject to excessive moisture where minimal cut is proposed. Measures to protect the subgrade from ponding water should be considered. Such measures may include maintenance of suitable cross-falls to reduce the potential for water to pond and the provision of a working platform comprising of suitable crushed rock or concrete. The required thickness will depend on the plant required onsite.

Where deep basements are proposed with depths of cut exceeding 4m, the subgrade is expected to be generally sandstone reducing such issues.

5.2.2. Fill placement

Based on the preliminary drawings referenced in Section 1, minor fill may be required in the middle of the site between footprint of proposed Building B, C and the 2 storey townhouses. General guideline for fill placement is provided below:

• Prior to placement of any fill, the proposed fill area should be stripped to remove all vegetation, topsoil, existing fill or other potentially deleterious material. Based on site observations allowance should be made to strip a minimum of 0.25m to 2.8m or to the base of Unit 1a (potentially greater than 2.8m depth at places that could not be reached due to access issues).

The area to receive fill should be proof rolled to identify any loose or yielding areas. Any yielding areas should be excavated and replaced with controlled fill.

- All fill beneath structures should be compacted in layers not exceeding 300mm loose thickness to a minimum density ratio of 98% Standard Compaction within ± 2% of Optimum Moisture Content (OMC).
- All fill should be supported by properly designed and constructed retaining walls or else battered at 1V:2H or flatter and protected against erosion.
- Any fill placed over subgrade steeper than approximately 8H:1V should be benched into the subgrade in level lifts.

Earthworks should be planned, carried out and documented in accordance with the recommendations outlined in AS3798-2007 '*Guidelines for Earthworks for Commercial and Residential Developments*' and in accordance with Newcastle City Council Guidelines where applicable. Level 1 earthworks observation and testing is recommended for any controlled fill required to support structures, pavement or infrastructure and for all hillside earthworks.

5.2.3. Groundwater

Groundwater strikes were not recorded within the likely depth of excavation required for basements. It should be noted that seepage or groundwater inflows confined to specific rock defects may be encountered in basement excavations. Groundwater levels can fluctuate seasonally, and perched or elevated groundwater may be present following rain events. Minor groundwater management may be required during construction, but heavy dewatering in not anticipated to be necessary.

5.2.4. Excavation stability

Temporary excavations above the water table up to 2m high into natural clay can be expected to stand for short periods with vertical cuts, however workers on foot should not approach any vertical cut higher than 1.4m.

Based on the preliminary drawings, excavation is required of approximately 8.5m to 9.5m below existing ground level (RL 28.10m AHD and RL 29.60m AHD) for the Building A, B and C combined basement levels. Approximately 4.5m below ground level (basement RL 25.40m AHD to RL 27.40m AHD) will be required for the two storey townhouses. Temporary shoring may be designed based on retaining wall parameters presented Table 7 (Section 5.4 below).

All other temporary excavations should be cut at 1:1 or flatter. Steeper cuttings may be permissible with specific geotechnical advice, otherwise shoring will be required to accommodate construction. Shoring should be designed specific to conditions of the excavation and in consideration to project needs.

5.2.5. Dilapidation survey

For all excavations that are deeper than 1m at or near the site boundary, a dilapidation survey of the adjacent properties is recommended prior to excavation.

5.2.6. Excavatability

Significant excavation will be required for multi storey building combine basement. Typically, excavation will be 8.5m to 9.5m below ground level extending to RL 28.1m AHD and is therefore anticipated to be within the Unit 3a, sandstone rock with a low to medium strength (point loads I_{550} less than 1MPa). The second smaller basement level at RL 25.4m AHD to RL 27.4m AHD follows the existing surface resulting in a shallower excavation up to 4.5m below ground level.

Based on our investigation, excavation within fill underlain by residual soils will be possible using conventional earthmoving equipment such as tracked loaders and hydraulic excavators. Based on the Chart by Pettifer & Frookes 1994), the rock is classified as easy ripping, and should be achievable with a D6 to D7 or equivalent dozer or a 30t excavator with a rock pick. Although not encountered in

our boreholes, concretionary zones may be present within the sandstone that require heavy ripping and possible breakers to achieve excavation. Where zero lot line excavation is required, rock sawing or milling may be required to achieve the required line and grade.

5.2.7. Reuse of material

Due to the proposed excavation onsite, a significant amount of material is expected to be generated.

Unit 1a and 1b comprises of material described as fill. Unit 1a material is unlikely to be suitable for reuse. Unit 1b fill may be used for landscaping purposes, and only after being checked and assessed for any deleterious or hazardous materials that may be embedded in it. Pieces of broken glass were found in fill material within BH04, indicating this material may have hazardous content.

Unit 2a and 2b typically comprises sandy clay with gravel, clay to sandy clay. Although the fines component of the material comprised low to medium plasticity clay, due to the proportion of sands and gravels the material has a low to medium shrink swell potential (Is value of 2.7). As such this material is likely to be suitable for reuse onsite as engineered fill (except for drainage zones at the back of retaining walls).

The excavations will also generate Unit 3a moderately weathered to slightly weathered, low to medium strength rock material. The material generated by excavation of sandstone rock can be re-used for engineered fill and drainage zones at the back of retaining walls.

It is not anticipated that excavations will not generate any Unit 3b, c, d, e, f and g rock material.

5.3. Foundation

All footing elements should be placed beneath any uncontrolled fill.

The footings of a single structure should be founded within the same strata unless the structure can be designed with articulation to accommodate potential differential ground response to loading. Further investigation will be required to assess ground condition for all proposed buildings.

5.3.1. High level footings

Limited borehole data is available within the footprint of the proposed two storey townhouses and Building B location. Based on the subsurface profiles encountered, it is anticipated that materials exposed near proposed basement level for buildings include:

- The front Mosbri Crescent townhouse has a current surface of 28m to 32m AHD with a proposed floor level of 25.4m to 27.4m AHD. As such the foundations will be 3m to 5m below current surface level and are expected to be within extremely weathered material (Unit 2b). As such it is preliminarily assessed the soil will include hard or better clays with an allowable bearing capacity of 250kPa.
- Building A has a current surface of 31m up to 37m AHD with a proposed floor level of 28.1m resulting in excavations between 3.3m to 9m. As such the foundations will be within slightly weathered material (Unit 3a). As such it is preliminarily assessed the front (south or shallowest cut) will be within (Class IV or better) rock and may be proportioned for an allowable ultimate bearing pressure of 500kPa (refer to Pells et al 1998). Similarly, at the rear of the building (northern or deepest cut) the rock strength is expected to increase to medium strength. Foundations within (Class III or better) rock and may be proportioned for an allowable ultimate bearing pressure of 1000kPa, however as discussed previously will require verification.
- Similar to Building A, Building B has a current surface of 30m up to 38m AHD with a floor level of 28.7m. The front two storey townhouses for this building are likely to be founded in Unit 2b allowable ultimate bearing capacity of 250kPa. The middle portion will likely be founded within Class IV sandstone allowable ultimate bearing pressure of 500kPa while the rear (deepest cut on the eastern side) assuming (Class III or better) rock and may be proportioned for an allowable ultimate bearing pressure of 1000kPa.

• Building C currently has a surface from 32m up to 38m AHD with a floor level of 29.6m. The front two storey townhouses for this building are likely to be founded in Unit 2b allowable ultimate bearing capacity of 250kPa. The remainder will likely be founded within Class IV sandstone allowable ultimate bearing pressure of 500kPa.

However, these values will need to be verified by detailed coring spread across the site.

5.3.2. Deep footings

Deep pile footings may be required at places with deep fill/soil profile if encountered within footprint of the proposed development, or where basement excavations span the transition between material type. Additional investigation will be required to confirm the founding conditions for the proposed buildings.

Piles socketed in a minimum of 0.3m into the geological Unit 3a (slightly weathered), may be designed for geotechnical strength parameters in accordance with the guidelines presented in Australian Standard AS2159-2009, Piling Design and Installation, as shown in Table 6. The final end bearing elevation will need to be a minimum of 3 pile diameters above the Upper Dudley Coal Seam split (Unit 3b). The preliminary ultimate capacities for deep footings are given in Table 6.

Unit	Origin	Material	Ultimate End Bearing Pressure (MPa) ⁽¹⁾	Serviceability End Bearing Pressure (MPa) ⁽²⁾	Ultimate Shaft Adhesion (kPa)	
2a	Residual soil	Very Stiff clay or better	N/A	N/A	45	
2b	Extremely weathered rock	Hard clay or better	2	0.7	65	
За	Moderately to slightly weathered sandstone rock	Class IV or better	4	2.5	100	
Unit 3a Depths > 6m	Slightly weathered sandstone rock	Class III or better	10	3.5	300	
Notes: (1) Ultimate values occur at large settlements (>5% of minimum footing dimensions). (2) Service ability cause settlement of less than 1% of minimum footing dimensions).						

Table 6: Preliminary ultimate deep foundation design parameters

A geotechnical reduction factor ϕ_9 of 0.45 should be applied to the above values for the geotechnical design. This reduction factor may be increased with more site investigation and site-specific pile load testing.

All footings should be free of loose or softened material and free of water prior to the placement of concrete. Concrete should be placed as soon as possible after the drilling/excavation to prevent softening of the footing base or pier walls. A suitably experienced geotechnical consultant should observe footing drilling / excavation to assess that the recommended founding material has been reached and to confirm that conditions encountered are consistent with those described in this report.

5.3.3. Earthquake design

Based on the geotechnical investigation results and the observed subsurface profile, an earthquake subsoil classification of "**Class C**_e – **Shallow Soil**" and hazard design factor Z is 0.12 for as per AS 1170.4 may be adopted for this site in its existing and proposed condition.

5.4. Retaining wall design

The soil parameters shown in Table 7 below can be used in the short and long-term design of the retaining walls.

It is noted that retaining walls constructed as part of the building walls will need to be designed for at rest (k_0) earth pressures due to their fixity. This is also the case for walls within close proximity of structures sensitive to movements.

Engineered retaining walls may be designed using the guidelines presented below. The design must include an assessment of global stability of the walls and surrounding soils. This is particularly the case for the combined basement levels excavation for Building A and B where the excavation will be within the zone of influence of the Kitchener Parade retaining wall.

Drainage behind the wall should, as a minimum, comprise a geo-composite drain or geotextile wrapped gravel drain at the back of the wall that drains to a geotextile wrapped subsoil drain along the wall toe. The toe drain should discharge to the site storm water system to provide long term drainage behind retaining walls.

Table 7: Retaining wall parameters

Soil Type	Residual Soil (Unit 2a)	Extremely weathered rock (Unit 2b)	Compacted Granular Backfill behind the wall
Short term shear strength (Su kPa)	75	200	NA
Long term (drained) friction angle ($\phi^{\prime } ~~^{\circ})$	26	28	33
Long term (drained) effective cohesion (c' kPa)	5	7	0
Unit Weight (γ kN/m³)	18	20	18
Coefficient of Lateral Earth Pressure at rest k_{0}	1.8	1.8	0.45
Coefficient of Active Earth pressure k_a	0.40	0.37	0.30
Clay coefficient of Active Earth pressure k_{ac}	1.25	1.2	N/A
Coefficient of Passive Earth pressure k_{p}	1.7	1.8	2.0

5.5. Pavement design parameters

From the laboratory testing the clay subgrade has a Californian Bearing Ratio (CBR) of 1% to 3.5%. Where sandstone is exposed (i.e. excavations greater than 4m) this may be increased to CBR 10% subject to further investigation.

6. Limitations

Guidance on the uses and limitations of this report is presented in the attached sheet, 'Important Information about your Coffey Report', which should be read in conjunction with this report.

Signature:	Stal
Full name:	Simon Baker
Title:	Senior Geotechnical Engineer
Date:	14 January 2019

Important information about your Coffey Report

As a client of Coffey you should know that site subsurface conditions cause more construction problems than any other factor. These notes have been prepared by Coffey to help you interpret and understand the limitations of your report.

Your report is based on project specific criteria

Your report has been developed on the basis of your unique project specific requirements as understood by Coffey and applies only to the site investigated. Project criteria typically include the general nature of the project; its size and configuration; the location of any structures on the site; other site improvements; the presence of underground utilities; and the additional risk imposed by scope-of-service limitations imposed by the client. Your report should not be used if there are any changes to the project without first asking Coffey to assess how factors that changed subsequent to the date of the report affect the report's recommendations. Coffey cannot accept responsibility for problems that may occur due to changed factors if they are not consulted.

Subsurface conditions can change

Subsurface conditions are created by natural processes and the activity of man. For example, water levels can vary with time, fill may be placed on a site and pollutants may migrate with time. Because a report is based on conditions which existed at the time of subsurface exploration, decisions should not be based on a report whose adequacy may have been affected by time. Consult Coffey to be advised how time may have impacted on the project.

Interpretation of factual data

Site assessment identifies actual subsurface conditions only at those points where samples are taken and when they are taken. Data derived from literature and external data source review, sampling and subsequent laboratory testing are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact on the proposed development and recommended actions. Actual conditions may differ from those inferred to exist, because no professional, no matter how gualified, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions. For this reason, owners should retain the services of Coffey through the development stage, to identify variances, conduct additional tests if required, and recommend solutions to problems encountered on site.

Coffey Services Australia Pty Ltd ABN 55 139 460 521 Issued: 11 August 2016

Your report will only give preliminary recommendations

Your report is based on the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until project implementation has commenced and therefore your report recommendations can only be regarded as preliminary. Only Coffey, who prepared the report, is fully familiar with the background information needed to assess whether or not the report's recommendations are valid and whether or not changes should be considered as the project develops. lf another party undertakes the implementation of the recommendations of this report there is a risk that the report will be misinterpreted and Coffey cannot be held responsible for such misinterpretation.

Your report is prepared for specific purposes and persons

To avoid misuse of the information contained in your report it is recommended that you confer with Coffey before passing your report on to another party who may not be familiar with the background and the purpose of the report. Your report should not be applied to any project other than that originally specified at the time the report was issued.

Interpretation by other design professionals

Costly problems can occur when other design professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, retain Coffey to work with other project design professionals who are affected by the report. Have Coffey explain the report implications to design professionals affected by them and then review plans and specifications produced to see how they incorporate the report findings.

Data should not be separated from the report*

The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way. Logs, figures, drawings, etc. are customarily included in our reports and are developed by scientists, engineers or geologists based on their interpretation of field logs (assembled by field personnel) and laboratory evaluation of field samples. These logs etc. should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

Geoenvironmental concerns are not at issue

Your report is not likely to relate any findings, conclusions, or recommendations about the potential for hazardous materials existing at the site unless specifically required to do so by the client. Specialist equipment, techniques, and personnel are used to perform a geoenvironmental assessment. Contamination can create major health, safety and environmental risks. If you have no information about the potential for your site to be contaminated or create an environmental hazard, you are advised to contact Coffey for information relating to geoenvironmental issues.

Rely on Coffey for additional assistance

Coffey is familiar with a variety of techniques and approaches that can be used to help reduce risks for all parties to a project, from design to construction. It is common that not all approaches will be necessarily dealt with in your site assessment report due to concepts proposed at that time. As the project progresses through design towards construction, speak with Coffey to develop alternative approaches to problems that may be of genuine benefit both in time and cost.

Responsibility

Reporting relies on interpretation of factual information based on judgement and opinion and has a level of uncertainty attached to it, which is far less exact than the design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded. To help prevent this problem, a number of clauses have been developed for use in contracts, reports and other documents. Responsibility clauses do not transfer appropriate liabilities from Coffey to other parties but are included to identify where Coffey's responsibilities begin and end. Their use is intended to help all parties involved to recognise their individual responsibilities. Read all documents from Coffey closely and do not hesitate to ask any questions you may have.

^{*} For further information on this aspect reference should be made to "Guidelines for the Provision of Geotechnical information in Construction Contracts" published by the Institution of Engineers Australia, National headquarters, Canberra, 1987.

Drawings

NTLGE220000 - NTLGE229999/75	- Hit	Call Contraction	1		
ROJECTS	no.	description	drawn	approved date	LEGEND
DB FILESINE WCASTLE PF	A	ORIGINAL ISSUE			APPROXIMATE BOREHOLE LOCATION
EOTECHNICS/1. JC					AERIAL IMAGE SOURCE: GOOGLE EARTH PRO 7.1.2 AERIAL IMAGE ©: SINCLAIR KNIGHT MERZ 2014
FILE: F:\G			drawn	SJB	CRESCENT NEWCASTLE PTY LTD
PM DWG		5 0 5 10 15 20	approve	ed JD	PROPOSED RESIDENTIAL DEVELOPMENT
8 5:39:25			date	30/10/20	COTTEY PRELIMINARY GEOTECHNICAL INVESTIGATION
E: 30/10/20*		Scale (metres) 1:600	scale	AS SHO	title: PROPOSED BOREHOLE LOCATION PLAN
PLOT DATE			original size	A3	project no: 754-NTLGE220504 drawing no: DRAWING 1

Appendix A – Borehole Logs

A TETRA TECH	COMPANY	Borehole ID.	BH01
Enai	nooring Log Boroholo	sheet:	1 of 14
Engi	neering Log - Borenole	project no.	754-NTLGE220504
client:	Crescent Newcastle Pty Ltd	date started:	03 Sep 2018
principal:		date completed:	07 Sep 2018
project:	Proposed Multi Building Residential Development	logged by:	MJ
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB

р	position: E: 385,619.90; N: 6,355,684.10 (MGA						MGA9	4)	surface elevation: 31.39 m (AHD)	angle from horizontal: 90°				
d	rill m	odel: C	oma	chio 450P,	Track	k moun	ted		drilling fluid: non / water	hole	diamete	r : 96 mm		
Ľ	drilli	ng info	rmat	ion			mate	erial sub	stance			1	1	
mothord 8	support	penetration	water	samples & field tests	RL (m)	depth (m)	graphic log	classification symbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	hand penetro- meter (kPa)	structure and additional observations	
T			-	E	-31	-		CL-CI	FILL: BITUMEN: black, 50mm thick, fine to coarse gravel. FILL: Sandy CLAY: low to medium plasticity, grey, with fine grained cond	M <wp< td=""><td></td><td></td><td>FILL- WEARING COURSE</td></wp<>			FILL- WEARING COURSE	
				E	-	- - 1.0—			CLAY: high plasticity, grey and pale grey, with orange lamination.				RESIDUAL SOIL	
				D+E	30			CL-CI	CLAY : low to medium plasticity, pale brown and grey, orange laminations, with fine sand, trace of fine gravel.	<wp< td=""><td></td><td></td><td>-</td></wp<>			-	
11:42 AD				E	-29	2.0			2.0 m: becoming more pale grey and pale brown				-	
File>> 30/10/2018				E	-	- 3.0—							-	
4.GPJ < <drawing< td=""><td></td><td></td><td></td><td>F</td><td>-28 - -</td><td>- - 4.0-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></drawing<>				F	-28 - -	- - 4.0-							-	
-NTLGE2205(_				-27	-		SP	SANDSTONE: fine grained, orange, extremely weathered, very low to low strength.	M	-		HIGHLY WEATHERED	
CORED 754					-	- 5.0—			Borehole BH01 continued as cored hole				-	
EHOLE: NON (-26	-							-	
Log COF BOF					-	- 6.0— -							-	
ARY.GLB rev:AS					-25	- -							-	
DF_0_9_06_LIBR,					-24	7.0							-	
ដ					Ļ	-								
	metho AD AS HA W RR & e.g. B	od auger of auger s hand a washbo rock ro bit show AD/T blank b	Irilling crewi uger ore ler/trid vn by it	* ng* xone suffix	sup M r C c pend wate	port nud casing etration	no ret rangir refusa Oct-12 w el on date er inflow	I nil sistance ng to al ater e shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered W W VS vane shear; peak/remouded (kPa)	classifica soil d based Classific oisture dry moist wet p plastic l l liquid lin	tion sym escriptio on Unifie ation Sys	bol & n ed tem	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense	
	* e.g. B T V	bit show AD/T blank b TC bit V bit	vn by it	suffix		■ 10- leve wate	Oct-12 w el on date er inflow er outflov	ater e shown w	Nc SPT with solid cone W VS vane shear; peak/remouded (kPa) W R refusal HB hammer bouncing	p plastic l I liquid lii	imit nit			

A TETRA TECI	COMPANY	Borehole ID.	BH01
Eng	incoring Log Cored Perchala	sheet:	2 of 14
Eng	ineering Log - Cored Borenole	project no.	754-NTLGE220504
client:	Crescent Newcastle Pty Ltd	date started:	03 Sep 2018
principal:		date completed:	07 Sep 2018
project:	Proposed Multi Building Residential Development	logged by:	MJ
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB

p	ositi	ion:	1: E: 385,619.90; N: 6,355,684.10 (MGA94) surface elevation: 31.39 m (AHD) ar									angle from horizontal: 90°					
d	rill n	node	I: Con	nacchio	0 450P	, Track mounted dri	Illing fluid: non / wa	ater			hole	diameter : 9	96 mm \	/ane id.:			
Ľ	Irilli	ng II	ntorm	ation	mate	rial substance					rock	(mass defects					
athod &	pport	ater	(m) -	pth (m)	aphic log	ROCK TYPE: grain charac colour, structure, minor cor	n cterisics, nponents	eathering &	strength & Is50 X = axial; O = diametral	field tests & Is(50) (MPa) a = axial:	re run RQD	spacing (mm)	(type, inclination, planari thickness	scriptions and criptions ity, roughness, coa s, other)	ating,		
Ĕ	su	Ň	RI	de	gra			alt	זבזבר≽	d = diametral	<u>ତ</u> ଏ	30 4 30 4 30 30 4 30 4 30	particular	ge	eneral		
			-31	- - - 1.0 -											- - - - -		
000			- -29	- - 2.0 - - -											-		
			-28	3.0											-		
	A		-27	4.0-		started coring at 4.55m	rained	DW							 - -		
			- -26	- 5.0 — -		brown/orange and grey, with sitt black carbonaceous laminations	stone bands and					+++++++++++++++++++++++++++++++++++++++	PT, 0 - 5°, PL, RO, CM - - -	N	- - -		
	- HQ		- 25	- 6.0 —						a=0.40 d=0.20	82%	- 14 - 1 - 4 - 1 - 4 - 1 + 4 - 1 + 4 - 1		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	י רי דר,		
			-	- - 7.0—						a=0.30 d=0.40			PT, 0°, PL, VR, SN =	Defeorte area atomatica	- Delects are I unless othe		
2010			-24	-									PT, 20°, PL, RO, SN 		-		
	method & support AS auger screwing AD auger drilling CB claw or blade bit W washbore NMLCNMLC core (51.9 mm) NQ wireline core (63.5mm) PQ wireline core (63.5mm) PQ wireline core (85.0mm) SPT standard penetration test RR rock roller/tricone			ort ewing ade bit re (51.9 ore (47.6 ore (63.5 ore (85.0 ore (85.0 ore etrat	mm) 5mm) 5mm) 0mm) ion	water Value 10/10/12, water level on date shown water inflow complete drilling fluid loss partial drilling fluid loss partial drilling fluid loss value rpressure test result (lugeons) for depth interval shown	e recove	ry material) ed ignation (%)	weathering RS residu XW extren HW highly DW distinc MW model SW slightl FR fresh 'W replaced w strength VL very loi L low M mediur H high VH very high	& altera al soil nely weat weathe ttly weat rately we y weath with A for a w n gh	ation* athered hered bathered ered ilteration	defect type PT parting JT joint SZ shear surface CO contact CS crushed seam SM seam roughness SL slickensided POL polished SO smooth RO rough VR yery rough	planarity PL planar CU curved UN undulating ST stepped IR Irregular coating CN clean SN stain VN veneer CO coating				

A TETRA TEC	H COMPANY	Borehole ID.	BH01
Ena	incoring Log Corod Porcholo	sheet:	3 of 14
Eng	ineering Log - Cored Borenole	project no.	754-NTLGE220504
client:	Crescent Newcastle Pty Ltd	date started:	03 Sep 2018
principal:		date completed:	07 Sep 2018
project:	Proposed Multi Building Residential Development	logged by:	MJ
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB

I	posit	ion:	E: 38	35,619.90; N: 6,355,684.10 (MGA94) surface elevation: 31.39 m (AHD) angle from									zontal: 90°			
L	drill ı	node	el: Cor	nacchio	450P	Track mounted dril	lling fluid: non / wa	ater			hole	diameter : 9	96 mm v	ane id.:		
	drill	ing i	nform	ation	mate	rial substance					rock	mass defe	cts			
	nethod & upport	/ater	(L (m)	epth (m)	raphic log	material descriptio ROCK TYPE: grain charac colour, structure, minor con	ROCK TYPE: grain characterisics, colour, structure, minor components		estimated strength & Is50 X = axial; O = diametral	samples, field tests & Is(50) (MPa) a = axial; d = diametral	ore run & RQD	defect spacing (mm)	additional observations and defect descriptions (type, inclination, planarity, roughness, coating, thickness, other)			
		5	-23 - -22	9.0 - - - - - - - - - - - - -	6	SANDSTONE: fine to medium gro brown/orange and grey, with sitts black carbonaceous laminations. 8.00 m: becoming grey 8.55 m: 250mm of carbonaceous	ained, tone bands and <i>(continued)</i> a laminations	HW HW	xb	a=0.20 d=0.40	82%		- PT, 5°, PL, RO, SN 			
			-21	-		NO CORE: 0.18 m SANDSTONE: fine to medium gra and grey, with sitistone bands an carbonaceous laminations.	ained, brown id black	HW		a=1.00	71%		JT, 50°, PL, RO, SN JT, 50°, PL, RO, SN JT, 70°, PL, RO, SN JT, 40°, PL, RO, SN JT, 30°, PL, RO, SN	-		
			-20	11.0— - -				XW		d=1.00	0%		= PT, 0°, PL, RO, SN 	PL, RO, CN, sscribed		
	— на		- -19	- 12.0 - - -		SILTSTONE: grey to dark grey, w	vith sandstone	SW - FR		a=1.30 d=0.80			- - - - - - - - - - - - - -	fects are: PT, 0 - 10°, unless otherwise de		
ICEL CONED 104-14			- -18	- 13.0 — -		NO CORE: 0.15 m				-	82%		JT, 35°, PL, RO, SN - -	⊂ - - - -		
			-17	- 14.0 — - -	· · · · · · · · · · · · · · · · · · ·	SANDSTONE: fine grained, grey, bands and black carbonaceous la 14.57 m: 70mm sandstone band	, with sitIstone aminations.	SW - FR					- - - - - SM.0°. PL RO.CO	-		
			-16	- 15.0 — - - -		15.00 m: 150mm sandstone band 15.30 m: 150mm sandstone band carbonaceous laminations	d d with			a=0.30 d=0.20	97%		-			
	method & support water AS auger drilling CB claw or blade bit W washbore NMLCNMLC core (51.9 mm) water i Q wireline core (47.6mm) PQ wireline core (63.5mm) PQ wireline core (65.0mm) SFT standard penetration test RR rock roller/tricone			mm) 6mm) 5mm) 0mm) ion	water 10/10/12, water level on date shown water inflow complete drilling fluid loss partial drilling fluid loss water pressure test result (lugeons) for depth interval shown	graphic log / core core rec (graphic sym no core core run & RQD barrel w RQD = Rock Qu	e recover novered recovered recovere	I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	weathering RS residu XW extrem HW highly DW distinc MW moder SW slightly FR fresh W replaced w strength VL very low L low M medium H high VH very hig	A altera al soil hely wea weathe ttly weath ately we y weath ith A for a w n	ation* athered red ihered eathered ered alteration	defect type PT parting JT joint SZ shear zone SS shear zone SS shear surface CO contact CS crushed seam SM seam roughness SL slickensided POL polished SO smooth RO rough	planarity PL planar CU curved UN undulating ST stepped IR Irregular Coating CN clean SN stain VN veneer CO coating			

A TETRA TECH	ICOMPANY	Borehole ID.	BH02		
Enai	nooring Log Porcholo	sheet:	1 of 1		
Engi	neering Log - Borenole	project no.	754-NTLGE220504		
client:	Crescent Newcastle Pty Ltd	date started:	10 Sep 2018		
principal:		date completed:	10 Sep 2018		
project:	Proposed Multi Building Residential Development	logged by:	MJ		
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB		
	· · · · · · · · · · · · · · · · · · ·				

	position: E: 385,624.50; N: 6,355,677.60 (N						(MGA94) surface elevation: 30.94 m (AHD)					angle from horizontal: 90°						
Ŀ	drill m	nodel: C	omac	chio 450P,	Track	k moun	ted		drilling fluid:	hole d	ole diameter : 100 mm							
ſ	drilli	ng info	mati	on			mate	rial sul	ostance									
	nethod & upport	penetration	vater	samples & field tests	KL (m)	lepth (m)	raphic log	lassification symbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	noisture condition	onsistency / elative density	han penet mete (kPa	d tro- er a)	structure and additional observations				
ł		0.0	5	E	Ľ.	ہ -		00	FILL: BITUMEN : Black, fine to coarse subangular gravel.		02	20	8 4	FILL- WEARING COURSE				
			_	E SPT 3, 3, 8 N*=11 E	-30	- - 1.0 - -		CL CL	FILL: Sandy GRAVEL: fine to coarse grained, brown, with some cobbles 63mm to 80mm. FILL: Sandy CLAY: low to medium plasticity, dark grey, grey and brown, fine to medium sand, some surounded sized gravel. FILL: CLAY: medium plasticity, grey and pale grey with orange.		 VSt			FILL				
42	AD/T		Not Observed		-29	2.0-	\approx	sc	CLAYEY SAND: fine to coarse grained, pale brown and pale grey.	M				RESIDUAL SOIL				
ingFile>> 30/10/2018 11:				SPT 6, 8, 9 N*=17	-28	- 3.0— -		CL CL	Sandy CLAY: medium plasticity, grey, fine to medium grained sand. CLAY: medium plasticity, orange mottled pale grey.		Η							
220504.GPJ < <uraw< th=""><th>•</th><th></th><th></th><th>SPT 15/10mm HB</th><th>-27</th><th>- - - -</th><th></th><th></th><th>Borehole BH02 terminated at 4.01 m Safety reasons</th><th><wp< th=""><th></th><th></th><th></th><th>EXTREMELY WEATHERED MATERIAL</th></wp<></th></uraw<>	•			SPT 15/10mm HB	-27	- - - -			Borehole BH02 terminated at 4.01 m Safety reasons	<wp< th=""><th></th><th></th><th></th><th>EXTREMELY WEATHERED MATERIAL</th></wp<>				EXTREMELY WEATHERED MATERIAL				
HOLE: NON CORED 754-NTLGE				N*=R	-26	- - 5.0— -												
rev:AS Log COF BORE					-25	- 6.0— - -												
CDF_0_9_06_LIBKARY.GL					-24	7.0												
	meth AD AS HA W RR * e.g. B T V	od auger d auger s hand au washbc rock rol bit shov AD/T blank b TC bit V bit	rilling crewin iger re ler/tric /n by t	* xone suffix	→23 supj M r C c pend wate	port mud casing etration er er leve wate wate	N - no res rangin ⊲ refusa Dct-12 wa el on date er inflow er outflow	nil istance g to l ater shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vare shear; peak/remouded (kPa) R refusal HB hammer bouncing	classificati soil de based o Classifica moisture D dry M moist W wet Wp plastic lin WI liquid lim	ion syml scription on Unifie tion Sys nit	bol & n d tem		consistency / relative density VS very soft S soft F firm St stilf VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense				

A TETRA TECH	H COMPANY			Borehole ID.	BH02A	
Ena	Incorin	~ ~		sheet:	1 of 13	
Eng	ineerin	g Lo	ј - Бо	project no.	754-NTLGE220504	
client:	Crescent I	Vewcast	le Pty Ltd		date started:	20 Sep 2018
principal:					date completed:	21 Sep 2018
project:	Proposed	Multi Bu	uilding Re	sidential Development	logged by:	MJ
location:	11 - 13 Mo	sbri Cre	scent, Co	oks Hill, NSW	checked by:	RB
position: E	: 385,619.90; N: 6,	355,693.60	(MGA94)	surface elevation: 32.40 m (AHD)	angle from horizontal: 90°	
drill model:	Comacchio 450P,	Track mour	ited	drilling fluid: non / water	hole diameter : 96 mm	
drilling inf	formation		material sub	stance		
ç			ç	material description	, ≩ hand	structure and

	ø	ation		samples &		n)	log	ation		material des	scription		еu	ncy / lensity	ha pen	and etro-	strue additiona	cture and I observations
	ethod	peneti	ater	field tests	L (m)	epth (r	aphic	assific /mbol	SOIL COIO	rYPE: plasticity or ur, secondary and	particle characteristic, minor components		oistur	insister lative c	me (k	eter Pa)		
ŀ	E x	- 0 0	>	E	R	ğ	<u>ت</u> ۳	s) Cl	∖FILL: BITU	MEN PAVEMEN	IT: black, 50mm.		Е Ŭ — — — —	8 e	100	<u>8</u> 8	FILL-WEARING	G COURSE 🚽
ŀ	$\overline{1}$			E		-	XXX		FILL: Grav	elly SAND: fine	to coarse grained,	r	IVI				FILL- PAVEME	NT +
					-32	-	· · · · ·		brown and p gravel. SANDSTOM	bale grey, with a	ingular to sub-angul	lar					HIGHLY WEAT BECOMING MC WEATHERED M	HERED DERATELY MATERIAL
					-	1.0-	· · · · ·											-
					-31	-	· · · · · · · · · · · · · · ·									ii		-
					_	-	· · · · · · · · · · · · · · ·											-
		İ				2.0	· · · · ·									ii		
8 11:42					-30	-	· · · · ·											-
30/10/201					_	- 3.0-	· · · · ·									ii		-
ingFile>>					-29	-	· · · · ·											-
J < <draw< td=""><td></td><td></td><td>served</td><td></td><td></td><td>-</td><td>· · · · ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></draw<>			served			-	· · · · ·											
20504.GP	- RR N		Not Ot		-	4.0	· · · · · · · · · · · · · · · · · · ·											-
4-NTLGE2					-28	-	· · · · ·											-
ORED 75					-	- 5.0-	· · · · ·											-
E: NON C					-27	-	· · · · ·											-
BOREHOL						-	· · · · ·											
-og COFE					-	6.0	· · · · ·											-
B rev:AS 1					-26	-	· · · · · · · · · · · · · · · · · · ·											-
RARY.GL					_	7.0-												
9_06_LIB					-25	-	· · · · ·											-
CDF_0						-	· · · · · · · · · · · · · · · · · · ·											
┢	<u> </u>	<u> </u>			-					- 0 (1-1-1		cl	assificat	ion svm	bol &			-
	meth AD AS	auger dr auger so	illing' rewir	* ng*	supp Mr Cc	nud asing	Ν	nil	B D	s & field tests bulk disturbed sa disturbed sample	ample e	5	soil de	scriptio	n d		VS S	relative density very soft soft
	HA W	hand au washboi	ger e		pene	etration			E SS	environmental sa	ample ble		Classifica	ition Sys	tem		F St	firm stiff
	RR	rock roll	er/tric	one		3 2	 no res rangin 	istance g to	U## HP	undisturbed sam	ple ##mm diameter ter (kPa)	mois D	sture drv				VSt H	very stiff hard
		h. 1 1			wate	er er	 refusa 	ſ	N N*	standard penetra	ation test (SPT) covered	M W	moist wet				Fb VL	friable verv loose
	* e.g.	bit show AD/T	n by :	suffix		leve	Oct-12 wa on date	iter shown	Nc VS	SPT with solid co	one k/remouded (kPa)	Wp WI	plastic li liquid lim	mit nit			L	loose medium dense
	B T	blank bit TC bit				wate	er inflow er outflow	,	R HB	refusal hammer bouncin	ng						D VD	dense very dense

A TETRA TECH	COMPANY	Borehole ID.	BH02A
Engi	naaring Lag Barahala	sheet:	2 of 13
Engi	neering Log - Borenole	project no.	754-NTLGE220504
client:	Crescent Newcastle Pty Ltd	date started:	20 Sep 2018
principal:		date completed:	21 Sep 2018
project:	Proposed Multi Building Residential Development	logged by:	MJ
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB

position: E: 385,619.90; N: 6,355,693.60 (MGA94) surface elevation: 32.40 m (AHD) angle from horizontal: 90° drill model: Comacchio 450P, Track mounted drilling fluid: non / water hole diameter : 96 mm drilling information material substance classification symbol consistency / relative density material description hand structure and penetration samples & field tests graphic log penetro meter additional obse vations method & support depth (m) SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components moisture condition ŝ water (kPa) RL 40 3 2 0 10 MODERATELY WEATHERED TO SLIGHTLY WEATHERED SANDSTONE. (continued) |||||||||||||-24 ||||||||||| | | || | | |9.0 ||||||||||-23 ||||||| | | |||||||10.0 ||||||-22 ||||||| | | || | | || | | |11.0 | | | || | | |-21 |||||| | | |Not Observed ||||||12.0 R ||||||||||||-20 |||||||||||| | | || | | |13.0 | | | || | | |||||||19 | | | |14.0 |||||-18 ||||||| | | || | | ||||||15.0 | | | || | | |-17 |||||||||||||||||method AD auger drilling* classification symbol & samples & field tests B bulk disturbed sample support consistency / relative density soil description N nil VS Μ mud verv soft based on Unified AS auger screwing' C casing D E disturbed sample S F soft HA W hand auger Classification System environmental sample firm penetration washbore SS split spoon sample St stiff RR rock roller/tricone undisturbed sample ##mm diameter hand penetrometer (kPa) standard penetration test (SPT) moisture D dry M mois W wet very stiff VSt no resistance ranging to refusal U## HP N H Fb hard dry moist wet plastic limit friable very loose N* SPT - sample recovered VL bit shown by suffix 10-Oct-12 water level on date shown Wp WI ▼ SPT with solid cone Nc loose L e.g. B T AD/T İiguid limit VS vane shear; peak/remouded (kPa) MD medium dense blank bit vater inflow

R

HB

water outflow

refusal

hammer bouncing

D VD

dense

very dense

754-NTLGE220504.GPJ COF BOREHOLE: NON CORED Log rev:AS I IBRARY.GLB g

Ę

TC bit

V bit

TETRA TECH	COMPANY	Borehole ID.	BH03	
En ai	nooring Log Do	vahala	sheet:	1 of 14
Engi	neering Log - во	project no.	754-NTLGE220504	
client:	Crescent Newcastle Pty Ltd		date started:	17 Sep 2018
orincipal:			date completed:	20 Sep 2018
oroject:	Proposed Multi Building Res	idential Development	logged by:	MJ
ocation:	11 - 13 Mosbri Crescent, Coo	oks Hill, NSW	checked by:	RB
position: E:	385,685.80; N: 6,355,574.40 (MGA94)	surface elevation: 32.75 m (AHD)	angle from horizontal: 90°	
drill model: (Comacchio 450P, Track mounted	drilling fluid: non / water	hole diameter : 96 mm	

L	drilling information material substance					stance							
	nethod & upport	penetration	vater	samples & field tests	sL (m)	lepth (m)	traphic log	lassification	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	noisture ondition	with the second		structure and additional observations
	AD			E 	-32			GP CI	FILL: BITUMEN: black, 50mm. FILL: Sandy GRAVEL: fine to coarse grained, grey, angular to sub-angular, fine grained sand. Sandy CLAY: medium plasticity, mottled red and brown. CLAY: medium plasticity, pale grey and red mottled orange. Sandy CLAY: low plasticity, orange mottled pale	>Wp	St - VSt		FILL- WEARING COURSE FILL- PAVEMENT RESIDUAL SOIL
ngFile>> 30/10/2018 11:42	V			SPT 21, 30/90mm N=R	-30	2.0— - - 3.0—			brown, fine grained sand.				ROCK
Log COF BOREHOLE: NON CORED 754-NTLGE220504.GPJ < <drawi< th=""><td>2</td><td></td><td></td><td></td><td>-29 - -28 - -27</td><td></td><td></td><td></td><td>Borehole BH03 continued as cored hole</td><td></td><td></td><td></td><td></td></drawi<>	2				-29 - -28 - -27				Borehole BH03 continued as cored hole				
CDF_0_9_06_LIBRARY.GLB rev:AS					-26 -	- - 7.0 - - -							
	meth AD AS HA W RR * e.g. B T V	auger di auger sc hand au washboi rock roll bit show AD/T blank bit TC bit V bit	rilling ger re er/tric	∗ ng* ∞ne suffix	sup Mr Cc pend wate	port nud casing etration er er leve wat	N no res rangin refusa Oct-12 wa el on date er inflow er outflow	nil istance ig to ater e shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered VC SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	classifica soil d basec Classific moisture D dry M moist W wet Wp plastic WI liquid li	tion symb escription on Unified ation Syste imit	ol &	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

A TETRA TEC	H COMPANY	Borehole ID.	BH03	
Ena	incoring Log Corod Porcholo	sheet:	2 of 14	
Eng	ineering Log - Cored Borenole	project no.	754-NTLGE220504	
client:	Crescent Newcastle Pty Ltd	date started:	17 Sep 2018	
principal:		date completed:	20 Sep 2018	
project:	Proposed Multi Building Residential Development	logged by:	MJ	
location:	11 - 13 Mosbri Crescent, Cooks Hill, NSW	checked by:	RB	

F	ositi	ion:	E: 38	5,685.8	30; N: 6	,355,574.40 (MGA94) surface elevation: 32.75 m (AHD) angle fr								; from horizontal: 90°			
f	drilli	node na i	of orm	ation	0 450P	rial substance	liling liuid: non / wa	ater				rock	rock mass defects				
0	bort	iig ii	Ĵ.	(m) th	bhic log	material description ROCK TYPE: grain character colour, structure, minor cor	on cterisics, mponents	thering & ration	estim strer & Is	ated ngth s50	samples, field tests & Is(50) (MPa)		defect spacing (mm)	additional obse defect des (type, inclination, planari thickness	ervations and scriptions ity, roughness, coating, s, other)		
40 00	ddns	wate	RL (dept	grap			wea	O=dia ≓ _ ∑	metral 포봇표	a = axial; d = diametral	core & R	30 300 3000 3000	particular	general		
			-32	- - - 1.0											 		
L				-					i i i	ii			<u>iiiii</u>		-		
			-31	- 2.0— -											-		
00.01 0102/01/02			-30	- 3.0 —		started coring at 3.40m									-		
			-29			SANDSTONE: fine to medium gr to pale brown, grey to dark grey, bands.	rained, brown , with siltstone	DW					······································	PT, 0°, PL, RO, CN 	-		
194-IN I LGEZZUDU			-28	- - 5.0 —				DW			a=0.80 d=0.10	72%		PT, 40°, IR, RO, SN PT, 10°, IR, RO, SN Drilling Break PT, 0°, PL, RO, VN 	- 964 - 586 - 587		
	НО —		-27	- - 6.0		SANDSTONE: fine to medium gr dark grey, with siltstone bands a carbonaceous laminations.	rained, grey, nd	SW - FR			a=1.50 d=0.60			- PT, 5 - 10°, ST, SN - Drilling Break Drilling Break	acts are: PT, 0 - 10°. PL, unless otherwise descri		
-00_LIDRART.GLD FEV.A			-26	- - 7.0-								97%		PT, 0°, PL, VR, CN Drilling Break	- er 		
201-0- 201-0-			-25	-					- X		a=0.40 d=0.70			- — PT, 5°, CU, RO, SN — PT, 5°, CU, RO, CN — Drilling Break	-		
	met AS AD CB W NMI NQ HQ PQ SPT	hod a aug cla wa conv wa conv wir wir sta tes	& supp ger scru ger drill w or bl shbore lLC con eline c eline c eline c ndard t	ewing ing ade bit re (51.9 ore (47.0 ore (63.0 ore (85.0 ore (85.0 ore trat	mm) 6mm) 5mm) 0mm) tion	water I (10/10/12, water level on date shown water inflow complete drilling fluid loss partial drilling fluid loss	graphic log / cor core rec graphic syr no core core run & RQD barrel w	e recover covered nbols indicate recovere	ry material) ed		weathering RS residu XW extrem HW highly DW distinc MW moder SW slightly FR fresh ** replaced w strength VL very low L low	& altera al soil hely weat weathe tly weat ately we weathe weathe ith A for a	ttion* thered hered eathered ered Iteration	defect type PT parting JT joint SZ shear zone SS shear surface CO contact CS crushed seam SM seam roughness SL slickensided	planarity PL planar CU curved UN undulating ST stepped IR Irregular coating CN clean		
	RR	roc	k roller	/tricone		water pressure test result (lugeons) for depth interval shown	I I RQD = Rock Qu	ality Des	ignatior	n (%)	M medium H high VH very hig	n gh		POL polished SO smooth RO rough	SN stain VN veneer CO coating		

A TETRA TEC	H COMPANY	Borehole ID.	BH03	
Ena	incoring Log Corod Porcholo	sheet:	3 of 14	
Eng	ineering Log - Cored Borenole	project no.	754-NTLGE220504	
client:	Crescent Newcastle Pty Ltd	date started:	17 Sep 2018	
principal:		date completed:	20 Sep 2018	
project:	Proposed Multi Building Residential Development	logged by:	MJ	
location:	11 - 13 Mosbri Crescent. Cooks Hill. NSW	checked by:	RB	

position: E: 385,685.80; N: 6,355,574.40 (MGA94) surface elevation: 32.75 m (AHD) angle									angle from horizontal: 90°						
	drill	mod	el: Cor	nacchio	o 450P,	Track mounted dri	lling fluid: non / wa	ater			hole	hole diameter : 96 mm vane id.:			
I	dri	lling	inform	ation	mate	rial substance					rock	rock mass defects			
	ethod &	ater	L (m)	əpth (m)	aphic log	material descriptio ROCK TYPE: grain charac colour, structure, minor con	n cterisics, nponents	eathering & teration	estimated strength & Is50 X = axial; O = diametral	samples, field tests & Is(50) (MPa) a = axial;	bre run k RQD	defect spacing (mm)	additional obse defect des (type, inclination, planari thickness	ervations and criptions ty, roughness, coating, , other)	
	E	ŠŠ	-		gr	SANDSTONE: fine to medium gr dark grey, with siltstone bands an carbonaceous laminations. (cont 8 10 m: 50mm siltstone band	ained, grey, nd <i>tinued)</i>	≷ ऌ SW - FR		d = diametral	8 ∞		Drilling Break	general	
			-24	- - 9.0	· · · · · · · · · · · · · · · · · · ·	9.15 m· 50mm carbonaceous lar	ninations			a=0.90 d=0.50	97%		— Drilling Break	-	
			-23	-									-	-	
			-	10.0— - -							100%				
			-22	- 11.0 — -	 					a=1.00 d=0.80	100%			- 8	
	HQ H		-21	- - 12.0 —	· · · · · · · · · · · · · · · · · · ·	11.60 m: 170mm carbonaceous	laminations							0 - 10°, PL, RO wise described	
			- -20	-	· · · · · · · · · · · · · · · · · · ·	12.12 m: 200mm siltstone band				a=0.70 d=0.20			- PT, 0°, PL, VR, CO	befects are: PT, unless othe	
			_	13.0 — - -	· · · · · · · · · · · · · · · · · · ·	13.25 m: 180mm siltstone band								-	
			-19	- - 14.0 —	· · · · · · · · · · · · · · · · · · ·					a=0.70 d=1.40	87%		-	-	
			-18	-	· · · · · · · · · · · · · · · · · · ·								JT, 40°, IR, RO, SN JT, 40°, PL, RO, SN JT, 70°, PL, RO, SN	-	
VUF_V_8_W_EIUN			-	15.0 — - -						a=2.00 d=0.60	85%		~ JI, 70°, ST, RO, SN	-	
ĺ			-17	-	· · · · ·									-	
	MG AS AE CE W NM NC HC	ethod and and and and and and and and and an	& supp uger scr uger dril aw or bl ashbore MLC co ireline c ireline c	oort ewing ling ade bit re (51.9 ore (51.9 ore (63.9	mm) 6mm) 5mm)	water I (10/10/12, water I evel on date shown water inflow complete drilling fluid loss partial drilling fluid loss	graphic log / con core rec (graphic syn no core	re recover covered mbols indicate recovere	r y ^{material)}	weathering RS residu XW extrem HW highly DW distinc MW model SW slightl FR fresh *W replaced Strepheneth	& altera al soil nely wea weathe ctly weat rately we y weathe	ation* athered red hered eathered ered literation	defect type PT parting JT joint SZ shear zone SS shear surface CO contact CS crushed seam SM seam	planarity PL planar CU curved UN undulating ST stepped IR Irregular	
	SF	× w PT st te R rc	andard st ick rolle	penetrat r/tricone	ion	water pressure test result (lugeons) for depth interval shown	RQD = Rock Qu	vithdrawn uality Desi	ignation (%)	VL very lov L low M mediur H high VH very hig	w n gh		roughness SL slickensided POL polished SO smooth RO rough	coating CN clean SN stain VN veneer CO coating	

A TETRA TECH	I COMPANY		Borehole ID.	BH04
Enai	nooring Log De	rahala	sheet:	1 of 13
Engi	neering Log - Бо	project no.	754-NTLGE220504	
client:	Crescent Newcastle Pty Lto	date started:	12 Sep 2018	
principal:			date completed:	14 Sep 2018
project:	Proposed Multi Building Re	esidential Development	logged by:	MJ
location:	11 - 13 Mosbri Crescent, Co	checked by:	RB	
position: E:	: 385,684.5; N: 6,355,567.6 (MGA94)	angle from horizontal: 90°		
drill model:	Comacchio 450P, Track mounted	hole diameter : 96 mm		

			, 100 4001	maor	mour		· · ·	anning huid. Horr, water	TIOLC	alameter	. 50 11111	
dr	illing info	matic	on			mate	rial sub	ostance				Ι
method &	support 1 2 penetration 3	water	samples & field tests	RL (m)	depth (m)	graphic log	classification symbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	hand penetro- meter (kPa) § 8 8 8	structure and additional observations
			E SPT 5,5,5 N=10 E SPT 3,4,5 N=9 B B SET 7, 225/30mm N=R				GW CL CL CL-CI CL-CI CL-CI	FILL: BITUMEN PAVEMENT: black, 20mm. FILL: Sandy GRAVEL: fine to coarse grained, sub-angular to angular, grey, with fine grained sand. FILL: CLAYEY SAND: fine to coarse grained, brown and red. FILL: Sandy CLAY: low plasticity, brown, dark brown, pale grey, fine to coarse grained sand, with fine grained grained angular to sub-angular gravel. FILL: Sandy CLAY: low plasticity, dark brown, mottled orange, fine grained sand, with fine grained sub-angular to sub-angular to sub-angular to sub-angular to sub-rounded gravel and glass pieces. Sandy CLAY: low to medium plasticity, dark brown and dark grey, fine to coarse grained sand. CLAY: low to medium plasticity, mottled orange and brown, with fine rounded to sub-rounded gravel. Sandy CLAY: low to medium plasticity, dark grey, with medium to course grained sand, with fine angular to sub-angular gravel. Sandy CLAY: low to medium plasticity, dark grey, with medium to course grained sand, with fine angular to sub-angular gravel. Gravelly CLAY: low to medium plasticity, dark grey, with medium to course grained sand, with fine angular to sub-angular gravel. Gravelly CLAY: low to medium grained, low to medium plasticity, pale grey and grey, with rounded to sub-rounded gravel, trace of fine to coarse grained sand. SANDSTONE: fine grained, pale grey and orange. SANDSTONE:	/	St - H		FILL- WEARING COURSE FILL - PAVEMENT FILL - UNCONTROLLED RESIDUAL SOIL
ma AE AS HA W RF * e.ç B T V	ethod auger d auger s hand au washbc c rock rol bit shov g. AD/T blank b TC bit	rilling* crewing uger re ler/tricc vn by s	g* one uffix	supp M r C c pend wate	port nud asing etration etration er Pr 10- leve wat wat	N no res rangin refusa Oct-12 we el on date ar inflow eer outflow	nil istance g to ater shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	classificat soil de based Classific oisture dry moist wet p plastic I l liquid lir	iion syml escriptio on Unifie ation Sys	bol & n d tem	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

A TETRA TECH	I COMPANY		Borehole ID.	BH04
	nooring log De	rahala	sheet:	2 of 13
Engi	neering Log - Во	project no.	754-NTLGE220504	
client:	Crescent Newcastle Pty Ltd	d	date started:	12 Sep 2018
principal:			date completed:	14 Sep 2018
project:	Proposed Multi Building Re	logged by:	MJ	
location:	11 - 13 Mosbri Crescent, Co	checked by:	RB	
position: E:	385,684.5; N: 6,355,567.6 (MGA94)	surface elevation: 32.8 m (AHD)	angle from horizontal: 90°	

drill model: Comacchio 450P, Track mounted drilling fluid: non / water hole diameter : 96 mm drilling information material substance classification symbol consistency / relative density material description hand structure and penetration samples & field tests graphic log penetro meter additional obse vations method & support depth (m) SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components moisture condition ŝ water (kPa) RL 40 3 2 0 10 MODERATELY WEATHERED TO SLIGHTLY WEATHERED SANDSTONE. (continued) |||||||||||||||||||||||||||||||-24 | | | ||||||||||9.0 ||||||||||||||||||||| | | |-23 10.0 111 ||||||30/10/2018 11:42 ||||||||||| | | |||||-22 | | | |||||| | | |11.0 ||||| | | || | | |||||| | | || | | |-21 754-NTLGE220504.GPJ R 12.0 ż ||||||||||||||||||||||||||||||||||| | | |-20 LIBRARY.GLB rev.AS Log COF BOREHOLE: NON CORED ||||| | | |13.0 ||||| | | || | | |||||111 ||||||| | | |||||||||||-19 14.0 ||||||||||||||||||||||||||||||||| | | |-18 ||||| | | |15.0 ||||| | | | |||||| | | |90 |||||| | | |Ę |||||17 ||||||method AD auger drilling* classification symbol & samples & field tests B bulk disturbed sample consistency / relative density support soil description N nil VS Μ mud verv soft based on Unified AS auger screwing' C casing D E disturbed sample S F soft HA W hand auger Classification System environmental sample firm penetration washbore SS split spoon sample St stiff RR rock roller/tricone undisturbed sample ##mm diameter hand penetrometer (kPa) standard penetration test (SPT) moisture D dry M mois W wet very stiff VSt no resistance ranging to refusal U## HP N H Fb hard dry moist wet plastic limit friable very loose N* SPT - sample recovered VL bit shown by suffix 10-Oct-12 water level on date shown Wp WI V SPT with solid cone Nc loose L e.g. B T AD/T İiguid limit VS vane shear; peak/remouded (kPa) MD medium dense blank bit vater inflow D VD R refusal dense TC bit

water outflow

V bit

HB

hammer bouncing

very dense

A TETRA TECH	COMPANY	Borehole ID.	BH04A	
Engi	naaring Lag Barahala	sheet:	1 of 1	
Engi	neering Log - Borenole	project no.	754-NTLGE220504	
client:	Crescent Newcastle Pty Ltd	date started:	14 Sep 2018	
principal:		date completed:	14 Sep 2018	
project:	Proposed Multi Building Residential Development	logged by:	MJ	

11 - 13 Mosbri Crescent, Cooks Hill, NSW checked by: RB location: position: Not Specified surface elevation: 32.80 m (AHD) angle from horizontal: 90° drill model: Comacchio 450P, Track mounted drilling fluid: hole diameter : 300 mm drilling information material substance consistency / relative density material description hand structure and classification penetratio samples & field tests g penetro meter vations additional obs depth (m) moisture condition SOIL TYPE: plasticity or particle characteristic, method a support graphic symbol ŝ colour, secondary and minor components water (kPa) RL 0 0 0 0 FILL: BITUMEN: black, fine to coarse gravel. FILL- WEARING COURSE Not Observed E FILL: Sandy GRAVEL: medium to coarse grained, FILL- PAVEMENT ||||||grey, fine to coarse sized sand. FILL - UNCONTROLLED AD/T ż ||||||FILL: Gravelly SAND: fine to coarse grained, E | | | |brown, some pieces of fine to coarse subangular gravel, some pieces of brick, terracotta, steel, 32 | | | |Е concrete and cobbles of sandstone and other 1000 111 | | |crushed rock. ||||||0.3 m: Steel bar | | |||||||FILL: CONCRETE BOULDER: 110mm thick. ||||||FILL: Gravelly SAND: fine to coarse grained, | | | |brown, some pieces of fine to coarse subangular gravel, some pieces of brick, terracotta, steel, -31 ||||||concrete and cobbles of sandstone and other 2.0 crushed rock. 111 ||||||Borehole BH04A terminated at 1.0 m Refusa 111 ||||||||||| | | |-30 | | | |||||| | | |3.0 ||||||||||||||| | | ||||||| | | |-29 ||||||754-NTLGE220504.GP、 4.0 ||||||||||||||||||||||| | | |||||-28 |||||COF BOREHOLE: NON CORED ||||| | | |5.0 |||||||||||||| | | |||||||||||||-27 6.0 |||||||1 | | | rev:AS Log ||||||||||| | | | |||||| | | |IBRARY.GLB ||||||-26 | | | |7.0 | | || | | |||||| | | |90 ||||||Ę |||||-25 |||||Method AD auger drilling* classification symbol & samples & field tests B bulk disturbed sample support consistency / relative density soil description N nil VS Μ mud verv soft based on Unified AS auger screwing' C casing D disturbed sample S F soft HA hand auger Classification System Е environmental sample firm netration W washbore SS split spoon sample St stiff RR rock roller/tricone undisturbed sample ##mm diameter hand penetrometer (kPa) standard penetration test (SPT) moisture D dry M mois W wet very stiff VSt no resistance ranging to refusal U## HP H Fb hard dry moist wet Ν friable N* SPT - sample recovered VL very loose bit shown by suffix

SPT with solid cone

hammer bouncing

refusal

vane shear; peak/remouded (kPa)

Nc

VS

HB

R

plastic limit

İiguid limit

loose

dense

very dense

medium dense

L

MD

VD

D

Wp

wi

10-Oct-12 water level on date shown

vater inflow

vater outflow

▼

e.g. B

т

AD/T

blank bit

TC bit

Vbi

Appendix B – Laboratory Test Results

Newcastle Laboratory

Coffey Services Australia Pty Ltd ABN 55 139 460 521 19 Warabrook Boulevard Warabrook NSW 2304

Report No: CBR:NEWC18S-08413

Issue No: 1

Accredited for compliance with ISO/IEC 17025 Testing.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory: Chris Blackford (Geotechnician) NATA Accredited Laboratory Number:431

Data Campio ID.	24/00/2010	Matarial:	
Date Sampled:	24/09/2018	Material:	Existing Ground
Date Submitted:	25/09/2018	Source:	On-Site
Date Tested:	2/10/2018	Specification:	No Specification
Project Location:	Newcastle, NSW		
Sample Location:	BH02 - 0.5 - 1.0m		
Load vs Pene	tration	Те	st Results
			AS 1289 6 1 1

16 1.5 1.4 13 12 11 cad on Hston (kN) 1 C 0.9 08 07 06 0.5 04 0.3 02 0.1 0.0 0.0 1.0 20 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 Penetration (mm)

CBR At 5.0mm (%): 3.5 Maximum Dry Density (t/m³): 1.70 Optimum Moisture Content (%): 18.7 Dry Density before Soaking (t/m³): 1 69 Density Ratio before Soaking (%): 100 Moisture Content before Soaking (%): 18.9 Moisture Ratio before Soaking (%): 101 Dry Density after Soaking (t/m³): 1.68 Density Ratio after Soaking (%): 99 Swell (%): 0.5 Moisture Content of Top 30mm (%): 22.2 Moisture Content of Remaining Depth (%): 20.1 Compactive Effort: Standard Surcharge Mass (kg): 4.50 Period of Soaking (Days): 4 Oversize Material (%): 0.0 -Moisture Content— Field Moisture Content (%): 27.0 23.0 Curing Time (Hrs): Plasticity Level Method: Visual

Comments

Form No: 18986, Report No: CBR:NEWC18S-08413

Newcastle Laboratory Coffey Services Australia Pty Ltd ABN 55 139 460 521 19 Warabrook Boulevard Warabrook NSW 2304

Comments

Form No: 18986, Report No: CBR:NEWC18S-08414

Material Test Report

Newcastle Laboratory

Coffey Services Australia Pty Ltd ABN 55 139 460 521 19 Warabrook Boulevard Warabrook NSW 2304

Phone: +61 2 4016 2300 Fax: +61 2 4016 2380

Report No: NEWC18S-08418-1

Issue No: 1

Accredited for compliance with ISO/IEC 17025 -Testing. Client: Coffey Services Australia Pty Ltd (Newcastle) 19 Warabrook Boulevard The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Newcastle NSW 2304 NATA **Principal:** Approved Signatory: Chris Blackford Project No.: 754-NEWC00587AA 754-NTLGE220504 - 754-11-17 MOSBRI CR COOKS HILL **Project Name:** (Geotechnician) NATA Accredited Laboratory Number:431 WORLD RECOGNISED Lot No.: -TRN: -Date of Issue: 9/10/2018

Sample Details

Sample ID: **Client Sample:** Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

NEWC18S-08418 24/09/2018 On-Site Existing Ground No Specification Submitted by client Newcastle, NSW BH02 - 1.4 - 1.5m

Test Results

Description	Method	Result	Limits
Sample History	AS 1289.1.1	Air-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	7.0	
Mould Length (mm)		254	
Liquid Limit (%)	AS 1289.3.1.1	38	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	14	
Plasticity Index (%)	AS 1289.3.3.1	24	
Date Tested		4/10/2018	

Comments

Material Test Report

Client:	Coffey Services Australia Pty Ltd (Newcastle) 19 Warabrook Boulevard Newcastle NSW 2304
Principal: Project No.: Project Name: Lot No.: -	754-NEWC00587AA 754-NTLGE220504 - 754-11-17 MOSBRI CR COOKS HILL TRN: -

Newcastle Laboratory

Coffey Services Australia Pty Ltd ABN 55 139 460 521 19 Warabrook Boulevard Warabrook NSW 2304

Phone: +61 2 4016 2300 Fax: +61 2 4016 2380

Report No: NEWC18S-08419-1

(Geotechnician) NATA Accredited Laboratory Number:431

Date of Issue: 9/10/2018

Issue No: 1

Pty Ltd (Newcastle)

WORLD RECOGNISED

Sample Details

Sample ID: Client Sample: Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location: NEWC18S-08419 -24/09/2018 On-Site Existing Ground No Specification Submitted by client Newcastle, NSW BH04 - 1.5 - 2.0m

Test Results

Description	Method	Result	Limits
Sample History	AS 1289.1.1	Air-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	2.0	
Mould Length (mm)		250	
Cracking		Yes	
Liquid Limit (%)	AS 1289.3.1.1	19	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	14	
Plasticity Index (%)	AS 1289.3.3.1	5	
Date Tested		5/10/2018	

Comments

N/A

Comments

Clay, medium to high plasticity brown.

Comments

Clay medium to high plasticity, brown.

Comments

Sandy Clay, medium plasticity, brown. fine to coarse grained sand.